NAD-biosynthetic enzyme NMNAT1 reduces early behavioral impairment in the htau mouse model of tauopathy
نویسندگان
چکیده
NAD metabolism and the NAD biosynthetic enzymes nicotinamide nucleotide adenylyltransferases (NMNATs) are thought to play a key neuroprotective role in tauopathies, including Alzheimer's disease. Here, we investigated whether modulating the expression of the NMNAT nuclear isoform NMNAT1, which is important for neuronal maintenance, influences the development of behavioral and neuropathological abnormalities in htau mice, which express non-mutant human tau isoforms and represent a model of tauopathy relevant to Alzheimer's disease. Prior to the development of cognitive symptoms, htau mice exhibit tau hyperphosphorylation associated with a selective deficit in food burrowing, a behavior reminiscent to activities of daily living which are impaired early in Alzheimer's disease. We crossed htau mice with Nmnat1 transgenic and knockout mice and tested the resulting offspring until the age of 6 months. We show that overexpression of NMNAT1 ameliorates the early deficit in food burrowing characteristic of htau mice. At 6 months of age, htau mice did not show neurodegenerative changes in both the cortex and hippocampus, and these were not induced by downregulating NMNAT1 levels. Modulating NMNAT1 levels produced a corresponding effect on NMNAT enzymatic activity but did not alter NAD levels in htau mice. Although changes in local NAD levels and subsequent modulation of NAD-dependent enzymes cannot be ruled out, this suggests that the effects seen on behavior may be due to changes in tau phosphorylation. Our results suggest that increasing NMNAT1 levels can slow the progression of symptoms and neuropathological features of tauopathy, but the underlying mechanisms remain to be established.
منابع مشابه
NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion
Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synt...
متن کاملNmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy
OBJECTIVE The nicotinamide-nucleotide adenylyltransferase protein Nmnat1 is a potent inhibitor of axonal degeneration in models of acute axonal injury. Hyperphosphorylation and aggregation of the microtubule-associated protein Tau are associated with neurodegeneration in Alzheimer's Disease and other disorders. Previous studies have demonstrated that other Nmnat isoforms can act both as axonopr...
متن کاملA novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics.
The neurofibrillary-tangles (NTFs), characteristic of tauopathies including Alzheimer's-disease (AD), are the pathological features which correlate best with dementia. The objective of our study was to generate an authentic transgenic (tg) animal model for NFT pathology in tauopathy/AD. Previous NFT-tg mice were driven by non-related/non-homologous promoters. Our strategy was to use the natural...
متن کاملModeling Alzheimer’s Disease in Mouse without Mutant Protein Overexpression: Cooperative and Independent Effects of Aβ and Tau
BACKGROUND Alzheimer's disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP...
متن کاملBrain 5‐lipoxygenase over‐expression worsens memory, synaptic integrity, and tau pathology in the P301S mice
Progressive accumulation of highly phosphorylated tau protein isoforms is the main feature of a group of neurodegenerative diseases collectively called tauopathies. Data from human and animal models of these diseases have shown that neuroinflammation often accompanies their pathogenesis. The 5-lipoxygenase (5LO) is an enzyme widely expressed in the brain and a source of potent pro-inflammatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 339 شماره
صفحات -
تاریخ انتشار 2018